Nullstelle einer linearen Funktion

Funktion Null setzen, x ausrechnen

Nullstelle einer linearen Funktion


Mit Nullstelle bezeichnet man die Stelle auf der x-Achse, an der der Funktionsgraph die x-Achse schneidet. Da der Punkt direkt auf der x-Achse liegt und die x-Achse die y-Achse im Koordinatenursprung schneidet, ist der zugehörige y-Wert gleich Null, also y = 0.

Die Funktionsvorschrift zum abgebildeten Graphen lautet: oder wer lieber ein y am Anfang stehen hat:

Wir können in der Grafik erkennen, dass der Funktionswert irgendwo zwischen 1 und 2 liegen muss. Aber das Ablesen scheint nicht ganz so einfach zu sein, deshalb berechnen wir die Nullstelle jetzt. Den Ansatz hatten wir schon am Anfang, der Funktionswert ist gleich Null, also f(x) = y = 0. In diese Gleichung f(x) = 0 setzen wir statt f(x) die entsprechende Funktionsvorschrift ein oder anders formuliert, wir setzen die Funktion gleich Null, also .

Der erste und wichtigste Schritt ist getan. Wir müssen nur noch einen Schritt weiterdenken und können dann unsere Nullstelle ausrechnen. Wir wollen einen Punkt auf der x-Achse ausrechnen, den y-Wert haben wir schon, der ist schließlich Null, aber der x-Wert fehlt uns noch. Deshalb stellen wir die Formel nach x um (wir machen das mit Äquivalenzumformungen, das bedeutet, dass wir auf jeder Seite die gleiche Rechenoperation ausführen; wenn wir auf der linken Seite eine 1 addieren, so müssen wir das auch auf der rechten Seite tun, die einzelnen Rechenschritte notieren wir hinter einem Arbeitsstrich):


Somit erhalten wir unsere Nullstelle, die sich bei befindet.

Autor: Christian Franzki Datum: 06.03.2012

Suche

Facebook


© Mathematik-Wissen 2012 | Inhaltsübersicht | Kontakt | Impressum