Quadratische Funktion

Scheitelpunktform, PQ-Formel, quadratische Ergänzung, quadratische Gleichungen

Bei der quadratischen Funktion handelt es sich um eine Kurve mit der Funktionsvorschrift y = x² oder f(x) = x². Dazu gibt es verschiedene Abwandlungen der Form f(x) = ax² + bx + c, aber dazu später mehr. Der Graph der Funktion mit der Gleichung f(x) = x² heißt Normalparabel. Es handelt sich hierbei um eine Zuordnung, bei der wir der Zahl x ihre Quadratzahl zuordnen, also:

Wenn wir diese Werte in ein Koordinatensystem eintragen und die Punkte mit einander verbinden erhalten wir:

Wenn wir den Funktionsgraphen betrachten, so stellen wir eine Symmetrie zur y-Achse fest. So werden den negativen x-Werten dieselben y-Werte zugeordnet wie ihren Gegenzahlen. Es gilt also f(x) = f(– x). Zum Beispiel ist der y-Wert zum x-Wert 1 gleich 1 (wegen 1² = 1) und der y-Wert zu x = – 1 auch gleich 1, also f(1) = f(– 1) wegen 1² = (– 1)².

Anhand des Graphen können wir nicht nur die Symmetrie erkennen, sondern auch die Monotonie (Steigung). Wir können erkennen, dass je negativer die x-Werte sind, desto stärker die Funktion fällt. Die Steigung könnte man sich als Straße vorstellen, auf der wir mit einem Fahrrad unterwegs sind und je weiter wir uns links befinden, desto steiler geht es bergab, wir sagen: Die Funktion fällt monoton. Je weiter wir zum Ursprung kommen, desto flacher wird das Land und wir werden mit unserem Fahrrad langsamer. Sobald wir den Nullpunkt passiert haben, steigt die Funktion wieder an, wir sagen: Die Funktion wächst monoton. Wenn wir dort mit unserem Fahrrad unterwegs sind, müssen wir je weiter wir nach rechts kommen, umso stärker in unsere Pedale treten. Der Punkt, an dem wir von bergab zu bergauf wechseln heißt übrigens Scheitelpunkt der quadratischen Funktion.

Autor: Christian Franzki Datum: 06.03.2012

Suche

Facebook


© Mathematik-Wissen 2012 | Inhaltsübersicht | Kontakt | Impressum