Zentrische Streckung

Ähnlichkeitsabbildung, die vergrößert oder verkleinert

Zentrische Streckung


Eine zentrische Streckung ist eine Ähnlichkeitsabbildung. Alle Strecken vom Streckzentrum Z zu jedem Punkt werden um den Streckfaktor k vergrößert, falls k > |1|, oder verkleinert, falls k < |1| ist. Bei einem Streckfaktor k = 1 wird jeder Punkt auf sich selbst abgebildet, ein Streckfaktor k = 0 ist nicht erlaubt, weil sonst alle abgebildeten Punkte im Streckzentrum Z liegen würden.

Wir wollen ein Dreieck durch zentrische Streckung abbilden. Gegeben haben wir unser Streckzentrum Z und unsere drei Dreieckspunkte A, B und C. Wir wollen jede Strecke, also von Z nach A, von Z nach B und von Z nach C mit dem Streckfaktor k = 2 strecken.

Wir gehen jetzt folgendermaßen vor:

Zuerst zeichnen wir für jeden Dreieckspunkt eine Halbgerade von Z aus.

Im nächsten Schritt messen wir jede Strecke, multiplizieren sie mit dem Streckfaktor k = 2 und zeichnen den Punkt auf der entsprechenden Halbgerade.

Das machen wir für jeden Punkt und verbinden die drei Bildpunkte zu einem Dreieck.

Autor: Christian Franzki Datum: 06.03.2012

Suche

Facebook


© Mathematik-Wissen 2012 | Inhaltsübersicht | Kontakt | Impressum