Funktionsbegriff, Steigung, y-Achsenabschnitt, Nullstelle, Funktionsvorschrift
Lineare Funktion
Der Definitionsbereich (auch Definitionsmenge genannt) ist die Menge an Zahlen, der wir eine bestimmte Zahl aus dem Wertebereich (auch: Zielbereich) zuordnen. Diese Zuordnung nennen wir Funktion. Sie ist eine eindeutige Vorschrift.
Vielleicht erinnern wir uns noch an die proportionale Zuordnung. Eine proportionale Funktion ist eine Gerade durch den Koordinatenursprung. Wir haben für sie eine Funktionsvorschrift y = m · x, wobei m hierbei der Proportionalitätsfaktor ist. Später werden wir sehen, dass dieses m für die Steigung der Geraden verantwortlich ist.
Zur Verfügung haben wir unsere Funktionsvorschrift, die von der Form y = mx + b ist. Darin sind die Steigung m und der y-Achsenabschnitt b vorgegeben. Also bekommen wir als Aufgabe gestellt: Man zeichne die lineare Funktion y = 2x – 3.
Wir wollen nun die Steigung einer linearen Funktion ermitteln. Zuerst werden wir sehen, wie wir anhand eines gezeichneten Graphen dessen Steigung herauslesen können und später reichen uns zwei beliebige Punkte auf diesem Graphen. Ein sehr wichtiger Begriff, den man im Zusammenhang mit linearen Funktionen und dessen Steigung hört, ist das Steigungsdreieck. Mithilfe dieses Steigungsdreiecks fangen wir an. Wir haben eine beliebige lineare Funktion gegeben, dessen Steigung wir noch nicht kennen.
Der y-Achsenabschnitt ist bei linearen Funktionen der Wert, an dem der Funktionsgraph die y-Achse schneidet.
Mit Nullstelle bezeichnet man die Stelle auf der x-Achse, an der der Funktionsgraph die x-Achse schneidet. Da der Punkt direkt auf der x-Achse liegt und die x-Achse die y-Achse im Koordinatenursprung schneidet, ist der zugehörige y-Wert gleich Null, also y = 0.
Als Voraussetzung haben wir zwei beliebige Punkte. Wir nehmen uns aber zwei konkrete und rechnen beispielhaft. Wir wollen eine lineare Funktion durch die Punkte P(1|2) und Q(4|1). Wir wissen nicht viel, außer, dass diese zwei Punkte auf unserer Geraden liegen und die Funktionsvorschrift von der Form y = mx + b ist.