PQ-Formel - Nullstellen einer quadratischen Funktion bestimmen

Wir wollen die Nullstellen, also die Stellen, an denen der Funktionsgraph die x-Achse schneidet (y = 0), bestimmen und hierfür eine Formel entwickeln – die PQ-Formel.

Wir haben eine quadratische Funktion der Form f(x) = ax² + bx + c und setzen f(x) = 0 (weil wir uns dadurch auf Höhe der x-Achse befinden). Wir tun dies also und setzen die Funktion gleich Null: 0 = ax² + bx + c. Diese Gleichung wollen wir nach x auflösen.

pq-formel0000.svg

pq-formel0001.svg

pq-formel0002.svg

pq-formel0003.svg

pq-formel0004.svg

pq-formel0005.svg

pq-formel0006.svg

pq-formel0007.svg

pq-formel0008.svg

pq-formel0009.svg

Mit dieser Formel können wir ab sofort immer Nullstellen quadratischer Funktionen bestimmen und Lösungsmengen von quadratischen Gleichungen. Wichtig ist, dass wir die normierte Version benutzen, also dass vor dem x² der Faktor a = 1 ist, also ggf. die Gleichung vorher durch a teilen, damit dies der Fall ist.

Wir rechnen ein Beispiel: Gegeben sei f(x) = 2x² – 8x + 6. Wir wollen die Nullstellen mit der PQ-Formel bestimmen. Wir setzen f(x) = 0, also 0 = 2x² – 8x + 6. Zuerst sehen wir, ob vor dem x² der Faktor a = 1 ist. Ist er hier nicht, also teilen wir durch a = 2 und erhalten: 0 = x² – 4x + 3. Hierauf können wir direkt unsere PQ-Formel anwenden: Wir sehen p = – 4 und q = 3 und setzen ein:

pq-formel0010.svg

pq-formel0011.svg

pq-formel0012.svg

pq-formel0013.svg

pq-formel0014.svg

pq-formel0015.svg

Bei x = 1 und x = 3 schneidet der Funktionsgraph die x-Achse.

Den Term unter der Wurzel nennen wir übrigens Diskriminante. Durch den Wurzelterm entscheidet sich auch, haben wir zwei Lösungen, eine Lösung oder überhaupt keine Lösung. Zwei Lösungen erhalten wir, wenn der Term unter der Wurzel eine positive Zahl ergibt, eine Lösung erhalten wir, wenn der Term unter der Wurzel gleich Null ist und keine, wenn wir die Wurzel nicht lösen können.