Verschieben der Normalparabel in y-Richtung - Parameter c
Wir fragen uns wie wir einen einzelnen Punkt verschieben würden. Angenommen wir wollen den Punkt (0|0) um 2 nach oben verschieben. Dann würden wir auf den y-Wert des Punktes einfach 2 addieren und landen bei (0|2). Um jeden Punkt um 2 nach oben zu verschieben, müssen wir zu unserer Funktionsvorschrift 2 addieren, also statt f(x) = x² erhalten wir g(x) = x² + 2 (wir nennen die Funktion g um sie von f unterscheiden zu können).
Ganz allgemein schreiben wir: f(x) = x² + c. Hier ist c der Parameter, der den Funktionsgraphen entlang der y-Achse nach oben oder unten verschiebt. Wenn der Parameter c positiv ist, also c > 0, dann wird die Normalparabel nach oben verschoben um c. Wenn c negativ ist, also c < 0, dann wird der Funktionsgraph nach unten verschoben.
Diese Funktion ist weiterhin symmetrisch zur y-Achse und hat weiterhin die gleichen Eigenschaften bezüglich der Steigung. Der Scheitelpunkt liegt nicht mehr im Ursprung, sondern im Punkt (0|c).